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The usual assumptions postulated in a reliability study
of a machine are the constant fallure rate and constant repair
rate (of the machine). The study of Bellcomm's computer UNIVAC
1108 indicates the fact that the hardware failures of the computer
are time-dependent in occurrence. More precisely, the probability
of a failure to occur varies with the time of day. This motivates
the use of a non-stationary stochastic process to describe the reli-
ability of the computer; its probability distribution is governed
by the time-~dependent failure rate and the constant repair rate. The
problem has been studied under two different situations: firstly,
we assume that the failure rate is time-dependent but that the repair
time is negligible, the model is then used to fit the Bellcomm
computer hardware failure data over a period of three months, they
are October, November of 1967 and March of 1968; secondly, we assume
that the failure rate is time-~dependent and the repair time follows
an exponential distribution. Because of inadequate repair time data,
only the derivation of the model is discussed here.

The reliability study covers the determination of the
probability distributions of the following:

1. Number of failures in a specified time interval.

2. The avallabllity of the computer at a given time or in
a given interval. By the availability, we mean the suc-
cessful operation of the machine and the expected length
of time that the computer will operate successfully in a
given time interval. Also included in the study is the
“estimation of the parameters involved in the model.
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The preceding consideration of one computer can easily
be generalized to the reliability study of N(>1) identical
computers. The following points are also discussed:

1. The probability distribution of the number of computers
operating successfully at a given time.

2. The optimal number of computers required to guarantee
the system's availability.
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1. INTRODUCTION

Hardware failures of the computer are observed and
recorded on a daily basis as they occur along the time axis.
The experiment starts at time 0, say, and ends at time T (<).

Let T, be the time of the 1" failure. After each failure T,

there follows a period of down time during which the computer
is being repaired. If gi“denotes the recovery time of the

computer, then the repair time of the ith failure is

i
while for others 1t is lengthy. For clarity, we present our
data on the following time axis

£, - Ti = Vi' For some fallures the repair time Vi is negligible,

I I 1 l

T i ! ! 1 1 ]

0 T1 El T2 g2 T3 £3 cee e
Figure 1

with 0 < T1 < g < T2 < By < T3 < 53 ..... < T, the ;th repair time

being £y - Ti fori=1,2, ... . Let (a,b) denote an interval

with a < b. If there are n fallures in [0, T], then the available

time of the computer is given by

n
(_) (e 15 Ti)k“)(gn, T)

i=1

where £, = 0 and (g, T) =@ if £, » T.
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Consider one computer, let N(t) be the number of
failures occurred "up to time t" given that we start to observe
the computer operation at time to = 0. We also introduce X(t)

to describe the state of the computer at time t. X(t) is equal
to 1 if the computer is operating at time t and is otherwise

equal to zero. In the following sections, the processes N(t)
and X(t) will be investigated under various assumptions.

2. RELIABILITY MODEL UNDER THE ASSUMPTION OF INSTANTANEOUS
REPAIR TIME

The main concern of this section is to study the
process N(t), t ¢ [0,T]. Let Pn(t) = P[N(t)=n] be the probability

of having n failures in the time interval [0,t]. For a fixed

t, N(t) assumes values 0, 1, 2, ... . Regarding the instantaneous
transition of the N(t) process, we assume that the conditional
probability that N(t+aA) equals n given that N(t) equals n-1 at
time t is given by

P[N(t+a) = n/N(t)=n-1] = a(t)a + o(a), & » O

where A » 0, and A(t) is positive and a continuous Ffunction in t.
The possible transitions of the process N(t) in a small time
interval (t, t+A) is either increasing the failure by one (say

from n-1 to n) or remains in state n-1 through time A. The prob-
ability of multiple failures occurring in time A is of smaller order
of A. The function A(t) may be interpreted as the failure occur-
rence rate at time t, which is time-dependent. With these prelim-
inaries, we can derive easily the differential-difference equations
for the probability Pn(t).

) dP.n(t) >
—ar— = _x(t)Pn(t) + A(t)Pn_l(t) for n%l
(1)
dPO(t)
—5r— = _x(t)PO(t) s

with the initial condition PO(O) = 1. To solve equation (1) for
Pn(t), we introduce the following probability generating function
G(s,t).
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o«

(2) a(s,t) = ) sPp_(¢) for |s| < 1
=0

Multiplying equation (1) by s™ and summing over n, we
reduce equation (1) to a partial differential equation.

(3) 28,8 - 3(5) a(s,t) + A(8) s G(s,8)  for |s| 5 1

With the corresponding initial condition G(s,0)
solution of G(s,t) is immediate, it is given by

1]
[
H
ny
oD

I

G(s,t)

[ 7Y
=

t
exp {-(1-s) J[ r(z) dz} for |s|
0

()

t
exp {-(1-s)a(t)} , with a(t) =f A(z)dz
0

Equation (4) is a generating function of a Poisson random variable.
Hence we conclude that, for every fixed t, the probability distri-
bution of N(t) is given by

e=a(t)rypy1n
n!

(5) P (t) = P[N(t)=n] = for n=0, 1, 2, ...

The process N(t) is in general a non-stationary Poisson process
with the parameter set [0,T], T<=. Note that if a(t) = at (a
is a positive constant), then N(t) reduces to a time homogeneous
Poisson process.
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Our next problem 1s to estimate the parameter

t
a(t) =[ A(z)dz .
0

For convenience and clarity, we use our computer data
to illustrate the estimation procedure. The numerical results
will be given after the explanation of the estimation method.

Our computer is operated on a daily basis; it is shut
down on Saturdays and Sundays. The time from 4 to 6 a.m. ,
of every working day is the maintenance and check up period and
no observations are taken. Since cccasionally the maintenance
period extends beyond 6 a.m., we take 8 a.m. to be the starting
time of our experiment. We thus have the observation period
[0,T] to be [8 a.m., U4 a.m.]

Let I be the total number of days we have observed,
and let Ni(t) be the number of failures up to time t on the
th
i

path of the stochastic process N(t) defined in equation (5).
By our construction, the processes N (t) are independently
distributed for 1=1,2, , L.

day for t ¢ [0,t]. The observed Ni(t) represents a sample

For any fixed t, t ¢ [0,T], the probability distribution
of Ni(t) is given by

n
e—a(t) a i(t)

(n171

-

P[Ni(t)=ni] =

the same as that of equation (5) and the joint probability

distribution of Ni(t), i=l, ..., I is the product
P[N,(t) = ng (t), i=1,...,I] = || P[Ni(t)=ni(t)]
T

n, (%)
e—Ia(t)[a(t)]i=l
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Thus, we have the leogarithm of likelihood function is equal to

I

~Ia(t) + 2: ni(t) log a(t)
i=1

The maximum likelihood estimate a(t) of a(t), for a fixed t, can
be easily obtained.

I
Z N, (£)
i=1

a(t) = T

= N(t) ¢t ¢ [0,T]

Since Ni(t) are independently and identically distributed, with
EN,(t) = a(t) < = and variance of N;(t) = a(t) < =. By the law
of large numbers, for every fixed t,

I
Z N, (t)

converges to a(t) a.s. as I tends to infinity. Thus we have
a(t) a consistent and obviously an unbiased estimator of a(t).

3. THE NUMERICAL RESULTS OF UNIVAC 1108 DATA COMPUTED UNDER
THE MODEL OF SECTION 2

The hardware failure data were collected by Department
1032 during the months of October and November of 1967 and March
of 1968. The observations were taken on a daily basis from
8 a.m. to 4 a.m. of the next day for a period of 20 hours. The
failure data are summarized in frequency tables (I), (II), (III)
and (IV) for the three months separately.

In Table (I), we divided the time axis into hourly
intervals using the beginning of each hour as diving points. 1In
the first part of Table (I), we have plotted the number of failures
N (see definition in section 1) in each hour over the whole
mdnth (October). However, in the original raw data, we noticed
that occasionally, the same failure source was recorded more than
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once due to the fact that the failure was not properly repaired

at the first time that the observer located the failure. Elimin-
ating those "duplicated" failures, we plotted only "cluster
centers" of these failures. This is given in the lower part of
Table (I). In both parts of Table (I) we see that the failure
frequencies vary with time, there are approximately three fre-
quency peaks which occurred in the sub-intervals from 9 to 10 a.m.,
13 to 14 p.m. and 16 to 17 p.m. The failure rate is obviously
non-linear.

In order to check the difference in the pattern of
failure frequency if we use another dividing system to obtaln the
hourly intervals, we chose 25 minutes after each hour as the
dividing points of the sub-intervals. As shown in Table II (of
October data), the non-linear failure frequencies persist, however
the peaks are different. This indicates that the failure frequency
pattern is sensitive to the different choice of dividing points
of sub-intervals (of the same length). However, this causes no
difficulty in the analysis, since we employ a continuous-time
stochastic process.

From now on, for consistency, the dividing points of
sub-intervals are chosen to be 8:25, 9:25, 10:25, ..., and so on.
The November (Table III) and March data (Table IV) showed a similar
pattern of failure frequencies. We observe the highest peak near
noon time and two local peaks in the early morning and late after-
noon respectively. The total number of failures decreases gradually
from 72 cases in October to 49 cases in November and further to
42 cases in March. This is due to the gradual settlement of the
newly installed computer.

Whatever may be the peaks, what we like to emphasize 1is
the non~linear feature of the failure data. Using the model
developed in section 2, we have

n -a(t)
P[N(t)=n] = &(E) ¢

o for n=0, 1, ...

with a(t) denoting the expected number of failures 1n
t

[o,t] = A (z)dz.
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As a comparison, we present the usual analysis by
using a constant failure rate A. Corresponding to this case,
we have

n «it
(6) PIN(t)=n] = ilElETQ——— for n=0,1,2, ...

and the expected number of fallures in (0,t) 1s At. The estimate
a(t) of a(t) is plotted in Table (X) on the basis of the estimation
method derived in section 2. The broken line (ii) is the estimate
based on the linear model (equation (6)), where the estimate A of

T
Y N (T
A is calculated from the formula i = l:lfﬁ-———-.

Comparing the two estimates &4(t) and it in Table (X) by
"eye" inspection, we see that they give quite different results.
The non-linear variation revealed in a(t) is rather obvious. Of
course, we could have made the comparison more rigorous by per-
forming a test of hypothesis of constant failure rate X against
a time dependent one A(t). This might be done in the future, however,
it does not seem necessary at the present (see Conclusion).

From Table (X) we can read off a(t) and calculate the
probability P[N(t)=n] accordingly. As an example, we given in
Table (XI) the probabilities corresponding to a(t) = 1.4 where
t is equal to 15:10 p.m. The probabilities may be read from
Biometrika Table [1].

Even an arbitrary straight line such as (i) through the
origin to the a(t) curve, would be a better fit than line
(11) at least up to time t = 22:25. For line (i), at t = 15:10 p.m.,
we have At = 1, which differs from a(t) = 1.4 by .4. The difference
of the corresponding probabilities P[N(t)=n] is given in Table (XI).
It shows that the linear model results could deviate in probability
(see column (3)) from the observed - estimated data by 50% (see n=0).

4, RELIABILITY STUDY OF ONE COMPUTER WITH TIME~DEPENDENT FAILURE
RATES AND CONSTANT REPAIR RATE

A more general approach is to take the repair time into
consideration. At any time t e[0,T], the computer is either at a
functioning state or at a repalr stage. Let us use X(t) to des-
cribe the state of the computer at time t. We deflne X(t) as
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follows:
1 1if the machine is operating

X(t) =

0 if the machine is being repaird.

Assume that initially X(0) = 1. Let pj(t) be the probability

that the process X(t) 1s in state j at time t, for j = 0, 1.
Thus the stochastic process X(t) has a parameter set [0,T] and
state space {0,1} . 'The postulated mechanism for the variation
of the process is again expressed in terms of the probabilities
occurring in a small interval (t, t+A). We assume that during
(t, t+A), the conditional probability that a transition from
state 1 to state 0 occurs is A(t)a+o(a) glven that the system
at state 1 at time t. Similarly, given that the system is at
state 0 at time t, the conditional probability that a transition
from state 0 to 1 occurs is ua+o(a). The value A(t) is the
instantaneous fallure rate and u is the repair rate. Under these
assumptions, we can easily derive the following differential
equations for the probabilities pj(t).

dpl(t)

(5) —ar = -l(t)pl(t) + upo(t)
dpo(t)

(6) 4T ° —upy(t) + x(t)pl(t) s

with the initial condition pl(O) = 1. Since po(t) + pl(t) =1,
it suffices to solve equation (5) only. Its solution is given by

pdx +

t X
_f [A(2)4+n]dz tf [A(y)+uldy
(1) py(t) =e O [eo
0

t
- j’ [A(z)+u]dz
0
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and
; po(t) =1 - pl(t)

Hence EX(t) = p;(t) and o°(X(t)) = p (t)[1-p;(£)]. We have
obtained the probability pl(t) that the computer is operating
at any time ¢t.

Another statement can be made about the process X(t).

T
Consider the stochastic integral ‘[ X(t)dt which exists in
T -0

quadratic mean. The integral<[ X(t)dt represents the total

n
v

amount of time that the process X(t) is in state 1 during [0,T].
Its expected value

T ~T
E[ X(t)dt =j p, (t)dt
0 0

gives the expected length of the process (that the computer is
operating) staying in state 1 during [0, T].

To obtain the probability distribution of the number
of failures N(t) up to time t, we proceed as follows. First,
let us re-draw Figure 1 of section 1 below

with 0 <« T1 < gl < T2 < 52 +ess < T. According to our assumptions
of the present section, the repair times Vi = Ei - Ti are indepen-
dently distributed with the same exponential distribution

G(V) =1 -~ MV V20 u>0
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and the conditional density of the ith failure time Ti given
that the last recovery occurred at Ei—l is
ti
(8) £(ty/84_ ) = A(tydexp (- A(z)dz}, a(z) > 0
| t1-1
ty 20

The joint probability density of the pair (T,, £y ),
given Ei 1> is

t

1
(9) >‘(ti) exp{-J( A(z)dz} pe 1
211

for £, 2 ty 2 &4 4

By simple probabilistic arguments, we obtain the joint
probablllty distribution of the random varilables Tl’ 1> T2,

€2, ey N(t) and N(t).
N(t) by t
(10) " A(ty) exp {—jr r(z)dzlu exp {-(g;~t;)ul} - exp{i/’ A (z)dz}
4.1 EN(t)
with 0 < tl < gl < t2 < 52 ..... < tN(t) < t. Integrating equatién

(10) over the region 0 < £y < £ < ... < ty(py < t, we get the
probability distribution of N(t), P (t) For the estimation of

the parameters u, the problem is simple The maximum likelihood
estimate p of u is given by
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. N(t)
RRCEY
2: (g,-T))
i=1

To estimate A(t) we need an explicit form for the function A(t).
5. RELIABILITY OF A REDUNDANT SYSTEM OF N IDENTICAI COMPUTERS

Suppose there 1s a system of N identical computers, each
of which operates independently and performs the same type of cal-
culations. The machines are subject to failures and repairs,
with the failure rate A(t) and repair rate p as defined in section 4.
The system is said to be in state k, at time t, for 0 < k < N, if
there are k computers operating at time t while the remaining N-k
machines are belng replaced. We have considered the special case
when N=1 in section 4, where the system is described by the sto-
chastic process X(t). Now, for N 1, we introduce Xi(t), i=1,...,N,

with each Xi(t) having the same probabilistic interpretation as that
of X(t). The process Xi(t) assumes value 1 or 0 at time t depending
on whether the ith computer is operating or not.

Let us define Sy(t) = z& X, (t) which represents the
i=
number of machines operating at time t. Since for any fixed t,
Xi(t) is a Bernoulli random variable with probability of being
operable equal to pl(t) (see equation (7)) and Xi(t), for i=1,...,N
are independently distributed, the sum S, (t) follows a binomial

distribution B(N,pl(t)). The probability that k machines are oper-
able at time t is given by

PISy(t)=k] = () pi(t) [1-p, () IV* for k=0,...,N

If a minimum number of k* machines is required to
guarantee a satisfactory performance of the system, then, with
a given N and pl(t), the reliability of the system at time ¢t

1s expressed by the following probability.
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N
Prsy(t) 2 k*¢1 = ) (N plee) [1-p ()™t -
1=Kk *

On the other hand, given pl(t) and a, we are able to

determine the number of machines N¥ needed to achieve a
predetermined reliability o. We find the largest N¥* such that

N ¥
* ®_3
Inf P[SN(t) > k¥] = Inf 2: (ﬂ_) pi(t)[l—pl(t)]N 2 oa
0<t<T 0<tsT {oc

6. CONCLUSIONS

The present paper derives a stochastic model useful in
analoging the reliability of computer operations. At present,
we used Bellcomm's UNIVAC 1108 hardware failure data as an example
to study the reliabllity problem. It is found by the numerical
evidence that the usual assumption of constant failure rate may
not be applicable in setting up a reliability model. Thus a time-
dependent failure rate A(t) is introduced in building the model.
It is also highly suspected that computer failure rate A(t) may
vary with its usage pattern. Accordingly, we would expect a
different failure rate A(t) in other computer systems. The model
derived in this paper assumes no functional form for A(t), except
the continulty and positivity conditions, this makes the model
feasible for general applications. The study is being extended
and will include analyses of MSC computer system data.
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